

ИНСТИТУТ БИОМЕДИЦИНЫ И ФАРМАЦИИ

Intro to Bioinformatics

Arsen Arakelyan

11.06.2022, Avetis Informatics Fellowship Program

Information content in biological systems

Genome \rightarrow mutations and chromosomal aberrations \rightarrow 3x10⁹ base pairs \rightarrow 4x10⁶⁻⁷ SNPs

Epigenome \rightarrow chromatin remodelling

- \rightarrow 28x10⁶ CpG sites
- \rightarrow ~ 10⁷ nucleosomes

Transcriptome

- \rightarrow > 10³ transcription factors
- \rightarrow ~ 2x10⁴ coding genes
- \rightarrow >10⁵ proteins
- \rightarrow >10⁵ non-coding genes

Proteome Metabolome

Credit: Hans Binder

Sequencing – uncovering information in DNA

Human genome project and massively parallel data generation technologies

- Human genome project (draft completed in 2003):
 - determining the sequence of human DNA, identifying and mapping all of the genes of the human genome both a physically and functionally
- Human genome project has led to an important inference:
 - Global outlook on complex biological processes occurring at cellular, tissue, or organism level is possible only with parallel assessment of a complete set of spatially and temporarily related molecular data
- Paradigm shift

From: Few carefully selected parameters in a large sample (low-throughput) *To:* Dozens to hundreds of thousands of parameters from a single sample (high-throughput)

Mutations

Definitions of mutate

verb

change or cause to change in form or nature.

"technology continues to mutate at an alarming rate"

synonyms: change, metamorphose, evolve, tr...

- A mutation is a change in a DNA sequence.
- A mutation is a source of new alleles.
- A mutation may produce an allele that is selected against, selected for, or selectively neutral.

Sequencing and microarrays revolutionized biotech

Sequencing technologies and applications in biomedicine

DNA sequencing

. . .

Cancer germline mutations Cancer somatic mutations Population Risk Score Pharmacogenomics Prenatal diagnostics

RNA sequencing

Cancer monitoring Cancer fusion genes Epidemiological surveillance

. . .

Big data producers

http://enseqlopedia.com/ngs-mapped/

7389 sequencing machines in 1027 centers

National genomic projects across the world

"Additionally, many country-specific aims were also identified, such as history/ethnic studies (Armenia, Brazil, Chile, Hong Kong, Iran, Malta, Mexico, New Zealand, Russia, Singapore, Vietnam) [20,21,22, 25, 31, 34, 41, 42, 45, 56, 61]".

https://humgenomics.biomedcentral.com/articles/10.1186/s40246-021-00315-6

Types of Genome Projects

https://humgenomics.biomedcentral.com/articles/10.1186/s40246-021-00315-6

Determining normal genomic variation cohorts based on demographic data and

criteria for identifying healthy individuals

Determining pathological genomic

variation

determine pathological genomic variation through the sequencing of clinical cohorts (rare diseases, cancers)

Infrastructure

data generation, data management, establishing standards of analyses, and education

Personalized and precision medicine

tailored diagnosis and treatment according to the information from the patient's own genome and specific environmental factors

Genome Asia: 100 000!, 2016

⊯ f in 🗞					Contact Us Journalist	s Blog	Sign Up	Send a Release	
	News	Solutions	Resources					Search Q	
News in Focus Bu	usiness & Mon	ey Science & Tech	Health & Living	Policy & Public Interest	People & Culture				

GenomeAsia 100K Initiative Announced to Sequence 100,000 Genomes in South, North and East Asia

Feb 11, 2016, 16:45 ET from Emerge Ventures

The UK 100,0000 Genomes Project, 2015

The 100,000 Genomes Project

The project will sequence 100,000 genomes from around 70,000 people. Participants are NHS patients with a rare disease, plus their families, and patients with cancer.

The aim is to create a new genomic medicine service for the NHS – transforming the way people are cared for. Patients may be offered a diagnosis where there wasn't one before. In time, there is the potential of new and more effective treatments.

All of US genome project: 1 mln! start 2015

MIT Technology Review

Log in / Register Search Q

7

f

¥ ¢

 \times

Subscribe

Topics+ The Daily Magazine Business Reports More+

Biomedicine

U.S. to Develop DNA Study of One Million People

An Obama initiative seeks to channel a torrent of gene information into treatments for cancer, other diseases.

by Antonio Regalado January 30, 2015

President Barack Obama is proposing to spend \$215 million on a "precision medicine" initiative the centerpiece of which will be a national study involving the health records and DNA of one million volunteers, administration officials said yesterday.

Precision medicine refers to treatments tailored to a person's genetic profile, an idea already transforming how doctors fight cancer and some rare diseases.

The Obama **plan**, including support for studies of cancer and rare disease, is part of a shift away from "one-size-fits-all" medicine, Jo Handelsman, associate director for the White House Office of Science and Technology Policy, said in a briefing yesterday. She called precision medicine "a game changer that holds the potential to revolutionize how we approach health in this country and around the world."

The White House said the largest part of the money, \$130 million, would go to the National Institutes of Health in order to create a population-scale study of how peoples' genes, environment, and lifestyle affect their health.

The Cancer Genome Atlas

Nature Genetics volume 45, pages1113–1120 (2013)

...based on paired tumor and normal tissue sets collected from

In the second se

https://www.cancer.gov/aboutnci/organization/ccg/research/structuralgenomics/tcga/tcga-by-the-numbers-infographic

BrainSeq: Neurogenomics to Drive Novel Target Discovery for Neuropsychiatric Disorders

	DLPFC	ΗΙΡΡΟ	total
adult	152	132	284
prenatal	0	0	0
0 <= age < 18	1	1	2
total	153	133	286

Non-psychiatric controls

	DLPFC	ΗΙΡΡΟ	total
adult	222	238	460
prenatal	29	28	57
0 <= age < 18	49	48	97
total	300	314	614

•

Explosion of biological data

Current world-wide sequencing capacity is growing at $\sim 3x$ per year!

http://schatzlab.cshl.edu/presentations/2014.03.24.Keystone%20BigData.pdf

If one **gigabyte** is the size of Earth,

then an **exabyte** is the size of the sun.

Explosion of biological data

Current world-wide sequencing capacity is growing at $\sim 3x$ per year!

http://schatzlab.cshl.edu/presentations/2014.03.24.Keystone%20BigData.pdf

Bioinformatics as a genomics driver

Bioinformatics serves to organize, annotate and analyze the data in the most informative and creative manner to study biology, and synthesize or modify living matter/organisms for a better world.

THE MULTIVERSE OF DATA TYPES

Biological questions to answer

- What is the genome sequence?
- How do different genomes vary?
- What variations are inked to diseases?
- How are genes activated and regulated?
- How genomes changed during evolution?
- What causes development of diseases?
- How does an organism respond to different drugs?

And many more ...

Why (where) bioinformatics matters

Precision medicine

- Precision drugs
- Diagnostics

Precise, early, non-invasive diagnostics and

personalized treatments

Engineer better soil, better crops, better

biomaterials

Identify events of genetic engineering

• Microbiome

Epidemiology

- Early detection
- Diagnostics
- Vaccine development

Faster, accessible detection of infectious agents Efficient screening for vaccine candidates

Bioengineering

- Agriculture, wine
- Biomaterials, biomimicry
- Genetic engineering

Ecosystem management

- Biodiversity
- Gene drive

Engineer better soil, better crops, better biomaterials Find traces of genetic modifications

Big issues of bioinformatics

Exascale biology is certain, zettascale on the horizon More aggressive compression algorithms needed Streaming

Parallel computing GPU-computing FPGA-computing Cloud computing

Data analysis

Batch effects HDLSS algorithms Genomic privacy Visualization

Visualization

Complex data requires simple visualization VR technologies to facilitate visualization

Biological data types

- Sequences
- Graphs
- High-dimensional data
- Geometric information
- Patterns
- Constraints
- Images
- Spatial information
- Models
- Literature

5'-GCTTACCGCCCCAGTGAGACCCTGTGCGGCGGGGAGCTGGTGGACACCCTCCAGTTCGTCTGTGGGGACCGCGGCTTCTACTTCAGCAGGCCCGCAAGCCGTGTGGGCAGCCGTGCCAGCAGGCGCGCCGCAAGCCGTGGCAGCCGTCGCAGCAGCTGTGACGTTGAGGAGTGCTGTTTCCGCAGCTGTGCTACCCCCGCCAAGTCCGAG-3'

Biological big data issues

• Storage

- Algorithms
- Data analysis
- Knowledge generation

Storage

- European Molecular Biology Laboratory European Institute of Bioinformatics ~ 20 Pb
- National Centre for Biotechnology Information (US) ~ 25 Pb
- NCBI GEO 2,081,388 samples
- NCBI SRA 2,340,690 samples

Data analysis issues

Batch effects

• HDLSS algorithms

• Genomic privacy

Visualization

Batch effects

- Data produced in different labs are different
- Standardization is practically impossible
 - ~2500 different microarray platforms
 - > 10 sequencing platforms
 - recommended RNA amounts 2.5-20 pg
 - in single cell seq every cell is a batch

https://www.biostars.org/p/133985/

HDLSS data analysis

- HDLSS: n (samples) << K (features)
- Biological data is HDLSS
- Gene expression analysis
 - few hundred samples and ~70000 genes
- SNP analysis
 - few thousand samples and ~ 4-10M SNPs

HDLSS data analysis

- Dimensionality reduction
 - PCA, MDS, SOM
- Multiple independent statistical tests (not a good idea)
 - t-tests, ANOVA,
- Machine learning
 - distance weighted discrimination, neural nets, SVM, association rule mining

Privacy-preserving computation

Gymrek M, McGuire AL, Golan D, Halperin E, Erlich Y. **Identifying personal genomes by surname inference.** Science. 2013 18;339(6117):321-4.

Identifying Personal Genomes by Surname Inference

Melissa Gymrek,^{1,2,3,4} Amy L. McGuire,⁵ David Golan,⁶ Eran Halperin,^{7,8,9} Yaniv Erlich¹*

Sharing sequencing data sets without identifiers has become a common practice in genomics. Here, we report that <u>surnames can be recovered from personal genomes by profiling short tandem</u> repeats on the Y chromosome (Y-STRs) and querying recreational genetic genealogy databases. We show that a combination of a surname with other types of metadata, such as age and state, can be used to triangulate the identity of the target. A key feature of this technique is that it entirely relies on free, publicly accessible Internet resources. We quantitatively analyze the probability of identification for U.S. males. We further demonstrate the feasibility of this technique by tracing back with high probability the identities of multiple participants in public sequencing projects.

Privacy-preserving computation

Genetics and population analysis

Advance Access publication February 14, 2013

A new way to protect privacy in large-scale genome-wide association studies

```
Liina Kamm<sup>1,2,3</sup>, Dan Bogdanov<sup>1,3</sup>, Sven Laur<sup>1,2</sup> and Jaak Vilo<sup>1,2,*</sup>
```


Visualization

Network visualization

3D structures

Samples Tuberculosis vs lung cancer

Clustering

Combining EHR, Genomics and Bioinformatics

Mutation data is the most frequent source of data for public health/precision medicine

Nat Rev Genet. 2008;9: 356–369. doi:10.1038/nrg2344

Secure exchange of health data – cornerstone of Estonian digital health architecture

From biobanking to personalized medicine

Genome Project

Estonian

estonian genome center university of tartu

Estonian biobank: omics profiling

Method	Sample size
Whole genome sequencing (30X)	3,000
Whole exome sequencing	2,500
Genome-wide genotyping arrays	130,000
Genome-wide methylation arrays	700
Genome-wide expression arrays	1,100
mRNA sequencing	600
Total RNA sequencing	50
Metabolomics (NMR)	11 000
Metabolomics (MS/MS)	1,100
Telomere length	5,200
Clinical biochemistry	2,700
IgG glycosylation	1,000

estonian genome center university of tartu

Return the genetic data back to people from the Estonian Biobank

- Estonian biobank is returning the **research** data back to the people who want and agree to get it.
- We are inviting back approx. 3000 people, around 2000 have received by now the polygenetic risk scores (PRS) and 30 min counseling.

Familiar hypercholesterolemia - FH

FH-linked variant (*LDLR*, *APOB*, *PCSK9* gene) carriers display (1.3 mmol/L) and **greater** and a **wide spectrum** of LDL-C level

50 mg/dl

37

Polygenic risk scores

- Most of the associated loci identified in GWAS have very small effects
- Polygenic risk score can be constructed by combining the effects of all associated loci
 - unweighted: sum of all risk alleles
 - weighted: sum of all
 risk alleles weighted by
 their effect size

- PRS this is what we are born with!
- Biomarkers (elevated LDL-C, systolic blood pressure, glycose tolerance test etc.) will change when disease process is already ongoing

Polygenic risk scores (PRS) weighted: sum of all risk alleles weighted by their effect size

Calculated as $S = w_1X_1 + w_2X_2 + ... + w_kX_k$, X₁,..., X_k - allele dosages for k independent markers (SNP-s), $w_1, w_2, ..., w_k$ – weights

estonian genome center

university of tartu

Methodological questions: A)How to select the SNPs – how many and what are the selection criteria? B)How to select the optimal weights?

K. Läll & K. Fischer, GM, 2016

PRS of Breast Cancer

 No BRACA1 & BRCA2, but ca 900 SNP variants

> Läll et al (2019) *BMC Cancer 19, 557*

Cumulative incidence by the age of 75 in GRS top 10% category was 12.6%. In middle category 6.2% and in the lowest 10% GRS category, 3.5%.

Median follow up 8.6 years, total number of cases 361.

estonian genome center university of tartu

Importance of pharmacogenomics

98% of Europeans carry ≥ 1 mutation of pharmacogenetic relevance

On average 5.5% of individuals in the population use at least one of the 32 drugs associated with the studied genes on a daily basis.

Pharmacogenetic study

Epidemiological surveillance of SARS-COV-2

Covid-19 statistics in Armenia

By April 6, 2020:

 Positive – 422,610 Recovered – 410,272 Deaths – 8,619 Tests total – 2,988,475

Situation in Armenia

Sampling timeline	Number of samples	Results availability	Sequencing Institution
March-August 2020	3	December 2020	Institute of Virology Charité Universitätsmedizin Berlin (Germany)
September- November 2020	53	May 2021	Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center (USA) in collaboration with IMB

This delay seriously impeded the ability of objective analysis of molecular epidemiologic information and hampered the informed decision-making by health authorities.

Sample counts and sequencing scheme

	Nanopore sequencing	Illumina sequencing	Obtained from GISAID
141 Samples	V	_	_
45 Samples	_	V	_
5 Samples	V	V	_
3 Samples	_	_	V
Total:		194 samples	

The total of 194 sequences represents 0.04% of 399,727 reported cases in Armenia (as of February 11th, 2022)

Clade and lineage diversity in Armenian sequences

The highest genomic diversity was noticed for clades 21J (Delta) (9 PANGO lineages) and 20B (8 PANGO lineages).

Phylogenetic analysis of sequences sampled in Armenia Clade **1**9A **20A 2**0B 201 📕 21J 21K 0.2 2020 2020.5 2021 2021.5 2022

Inbound and outgoing transmission routes of SARS-CoV-2

The majority of importations inferred by phylogeographic analyses were through air-way travels, while ground transportation played very little or no role

The majority of early importations were from countries with considerably large Armenian diaspora (such as Russia, Kazakhstan) as well as touristic destinations (Italy)

The geography of of later VOC lineages was much wider

Clade associated mutations associated with HLA epitopes

Protective HLA alleles HLA-A*02:01, HLA-A*24:02 **Risk HLA alleles** HLA-A*01:01, HLA-A*03:01, HLA-B*51:01

Collaborative agenda for bioinformatics and medical informatics

MI in support of functional genomics

- 'Phenotype' databases for clinical annotation of biological samples and for clinical validation of biological research results.
- Disease reclassification.
- Informatics for supporting rational drug design and development.

Collaborative agenda for bioinformatics and medical informatics

BI in support of individualized health care

- Including genetic data in the electronic health record.
- Methods for personalized health care: guidelines and decision-making support systems.
- Stratifying patients by their genetic profiles: molecular diagnosis, clinical trials, and pharmacogenomics.
- Point-of-care data collection and access.

Collaborative agenda for bioinformatics and medical informatics

Biomedical informatics in support of genomic medicine

- Molecular and functional imaging.
- Modelling and simulation for an approach that integrates physiology and pathology.
- Epidemiology: biobanks and population repositories.
- New methods for e-learning in genomic-based medicine.

